Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 103(6): 103705, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38598913

RESUMO

Compared to high-yield commercial laying hens, Chinese indigenous chicken breeds have poor egg laying capacity due to the lack of intensive selection. However, as these breeds have not undergone systematic selection, it is possible that there is a greater abundance of genetic variations related to egg laying traits. In this study, we assessed 5 egg number (EN) traits at different stages of the egg-laying period: EN1 (from the first egg to 23 wk), EN2 (from 23 to 35 wk), EN3 (from 35 to 48 wk), EN4 (from the first egg to 35 wk), and EN5 (from the first egg to 48 wk). To investigate the molecular mechanisms underlying egg number traits in a Chinese local chicken breed, we conducted a genome-wide association study (GWAS) using data from whole-genome sequencing (WGS) of 399 Laiwu Black chickens. We obtained a total of 3.01 Tb of raw data with an average depth of 7.07 × per individual. A total of 86 genome-wide suggestive or significant single-nucleotide polymorphisms (SNP) contained within a set of 45 corresponding candidate genes were identified and found to be associated with stages EN1-EN5. The genes vitellogenin 2 (VTG2), lipase maturation factor 1 (LMF1), calcium voltage-gated channel auxiliary subunit alpha2delta 3 (CACNA2D3), poly(A) binding protein cytoplasmic 1 (PABPC1), programmed cell death 11 (PDCD11) and family with sequence similarity 213 member A (FAM213A) can be considered as the candidate genes associated with egg number traits, due to their reported association with animal reproduction traits. Noteworthy, results suggests that VTG2 and PDCD11 are not only involved in the regulation of EN3, but also in the regulation of EN5, implies that VTG2 and PDCD11 have a significant influence on egg production traits. Our study offers valuable genomic insights into the molecular genetic mechanisms that govern egg number traits in a Chinese indigenous egg-laying chicken breed. These findings have the potential to enhance the egg-laying performance of chickens.

2.
BMC Genomics ; 25(1): 296, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509464

RESUMO

BACKGROUND: Body weight and size are important economic traits in chickens. While many growth-related quantitative trait loci (QTLs) and candidate genes have been identified, further research is needed to confirm and characterize these findings. In this study, we investigate genetic and genomic markers associated with chicken body weight and size. This study provides new insights into potential markers for genomic selection and breeding strategies to improve meat production in chickens. METHODS: We performed whole-genome resequencing of and Wenshang Barred (WB) chickens (n = 596) and three additional breeds with varying body sizes (Recessive White (RW), WB, and Luxi Mini (LM) chickens; (n = 50)). We then used selective sweeps of mutations coupled with genome-wide association study (GWAS) to identify genomic markers associated with body weight and size. RESULTS: We identified over 9.4 million high-quality single nucleotide polymorphisms (SNPs) among three chicken breeds/lines. Among these breeds, 287 protein-coding genes exhibited positive selection in the RW and WB populations, while 241 protein-coding genes showed positive selection in the LM and WB populations. Genomic heritability estimates were calculated for 26 body weight and size traits, including body weight, chest breadth, chest depth, thoracic horn, body oblique length, keel length, pelvic width, shank length, and shank circumference in the WB breed. The estimates ranged from 0.04 to 0.67. Our analysis also identified a total of 2,522 genome-wide significant SNPs, with 2,474 SNPs clustered around two genomic regions. The first region, located on chromosome 4 (7.41-7.64 Mb), was linked to body weight after ten weeks and body size traits. LCORL, LDB2, and PPARGC1A were identified as candidate genes in this region. The other region, located on chromosome 1 (170.46-171.53 Mb), was associated with body weight from four to eighteen weeks and body size traits. This region contained CAB39L and WDFY2 as candidate genes. Notably, LCORL, LDB2, and PPARGC1A showed highly selective signatures among the three breeds of chicken with varying body sizes. CONCLUSION: Overall this study provides a comprehensive map of genomic variants associated with body weight and size in chickens. We propose two genomic regions, one on chromosome 1 and the other on chromosome 4, that could helpful for developing genome selection breeding strategies to enhance meat yield in chickens.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Galinhas/genética , Locos de Características Quantitativas , Genômica , Peso Corporal/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , China
3.
Poult Sci ; 103(1): 103224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980753

RESUMO

The objective of this study was to investigate the effect of Lactobacillus salivarius (L. salivarius) SNK-6 supple-mentation on the laying performance, egg quality, blood parameters, intestinal morphology, and cecal microbial community of laying hens. A total of 432 healthy 30-wk-age laying hens were randomly divided into 3 groups with 6 replicates under the same husbandry and dietary regimes: control (CON); 2.0 × 108 CFU/kg L. salivarius supplementation (T1); 2.0 × 109 CFU/kg L. salivarius supplementation (T2). The experiment lasted for 10 wk. The results indicated that the supplementation resulted in a significant reduction in the broken egg and unqualified egg ratios, and a significant increase in the eggshell strength, eggshell relative weight, albumen height, and Haugh units (P < 0.05). The L. salivarius-treated hens exhibited significantly reduced serum malondialdehyde levels (P < 0.05); significantly increased total protein, phosphorus, calcitonin, and immunoglobulin M (P < 0.05); significantly increased cecal secretory immunoglobulin A concentration (P < 0.05); significantly improved villus height (VH) in the duodenum and VH to crypt depth ratio in the jejunum (P < 0.05). The serum globulin and interleukin-1ß, immunoglobulin G concentrations, and catalase activity significantly increased in T2 (P < 0.05). Furthermore, the serum interferon-α level in T1 was significantly higher than that of the CON (P < 0.05). The intestinal barrier-related mRNA gene ZO-1, CLDN1, and MUC2 expression in the jejunum was significantly upregulated in the T1 and T2 groups (P < 0.05). The Firmicutes/Bacteroidetes ratio was higher and the relative abundances of Flavonifractor and Clostridiales_noname were significantly higher in the T1 group (P < 0.05). In conclusion, dietary supplementation with L. salivarius SNK-6 may improve hen egg quality, serum antioxidant capacity, immune function, and intestinal health.


Assuntos
Ligilactobacillus salivarius , Microbiota , Animais , Feminino , Suplementos Nutricionais/análise , Dieta/veterinária , Galinhas , Ração Animal/análise , Antioxidantes , Imunoglobulina M
4.
BMC Genomics ; 24(1): 738, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049727

RESUMO

BACKGROUND: In this study, we explored the characteristics and causes of freckle formation. We collected 15 normal and freckled eggs each for eggshell index testing and hypothesized that the structure and function of the uterus would have a direct effect on freckled egg production given that eggshells are formed in the uterus. To test this hypothesis, we collected uterine tissue from laying hens (418 days of age) that laid normal (Group C, n = 13) and freckled (Group T, n = 16) eggs for 7 consecutive days. RESULTS: When we examined the eggshell quality, we found that the L value was significantly lower (P < 0.05) in the freckled site group of freckled eggs compared to the normal egg group during the detection of blunt pole, equator, and sharp pole of the eggshell color. The a-values of the three positions were significantly higher (P < 0.05) in the freckled site group of freckled eggs, and the a-values of the blunt pole were significantly lower (P < 0.05) in the background site group of freckled eggs, compared to the normal egg group. The b-values were significantly higher (P < 0.05) at three locations in the freckled site group of freckled eggs compared to the normal egg group. During the detection of eggshell thickness, the blunt pole was significantly higher (P < 0.05) in the freckled egg site group of freckled eggs compared to the normal egg group, and there was no significant difference between the other groups (P > 0.05). There was no significant difference (P > 0.05) between the transverse and longitudinal diameters of the eggs in each group.We then performed histopathology and transcriptome analyses on the collected tissue. When compared with group C, uterine junctional epithelial cells in group T showed significant defects and cilia loss, and epithelial tissue was poorly intact. From transcriptomics, genes that met (|log2FC|) ≥ 1 and P < 0.05 criteria were screened as differentially expressed genes (DEGs). We identified a total of 136 DEGs, with 101 up- and 35 down-regulated genes from our RNA-seq data. DEGs identified by enrichment analyses, which were potentially associated with freckled egg production were: IFI6, CCL19, AvBD10, AvBD11, S100A12, POMC, and UCN3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that pathways were associated with immunoreaction and stress stimulation, e.g., complement activation, interleukin-1 cell reactions, viral responses, cell reactions stimulated by corticotropin releasing hormone, steroid hormone mediated signaling pathways, staphylococcal infections, B cell receptor signaling pathways, and natural killer cell mediated cytotoxicity. CONCLUSIONS: From these data, freckled areas deepen freckled eggshell color, but background areas are not affected. At the same time,we reasoned that freckle eggs may result from abnormal immune responses and impaired uterine functions induced by stress. Therefore, the uterus of laying hens in a state of stress and abnormal immune function can cause the appearance of freckled eggs.


Assuntos
Galinhas , Transcriptoma , Animais , Feminino , Galinhas/genética , Perfilação da Expressão Gênica , Ovos/análise , Útero/metabolismo , Casca de Ovo/metabolismo
5.
BMC Genomics ; 24(1): 686, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968610

RESUMO

BACKGROUND: Egg laying rate (LR) is associated with a clutch, which is defined as consecutive days of oviposition. The clutch trait can be used as a selection indicator to improve egg production in poultry breeding. However, little is known about the genetic basis of clutch traits. In this study, our aim was to estimate genetic parameters and identify quantitative trait single nucleotide polymorphisms for clutch traits in 399 purebred Laiwu Black chickens (a native Chinese breed) using a genome-wide association study (GWAS). METHODS: In this work, after estimating the genetic parameters of age at first egg, body weight at first egg, LR, longest clutch until 52 week of age, first week when the longest clutch starts, last week when the longest clutch ends, number of clutches, and longest number of days without egg-laying until 52 week of age, we identified single nucleotide polymorphisms (SNPs) and potential candidate genes associated with clutch traits in Laiwu Black chickens. The restricted maximum likelihood method was used to estimate genetic parameters of clutch pattern in 399 Laiwu Black hens, using the GCTA software. RESULTS: The results showed that SNP-based heritability estimates of clutch traits ranged from 0.06 to 0.59. Genotyping data were obtained from whole genome re-sequencing data. After quality control, a total of 10,810,544 SNPs remained to be analyzed. The GWAS revealed that 421 significant SNPs responsible for clutch traits were scattered on chicken chromosomes 1-14, 17-19, 21-25, 28 and Z. Among the annotated genes, NELL2, SMYD9, SPTLC2, SMYD3 and PLCL1 were the most promising candidates for clutch traits in Laiwu Black chickens. CONCLUSION: The findings of this research provide critical insight into the genetic basis of clutch traits. These results contribute to the identification of candidate genes and variants. Genes and SNPs potentially provide new avenues for further research and would help to establish a framework for new methods of genomic prediction, and increase the accuracy of estimated genetic merit for egg production and clutch traits.


Assuntos
Galinhas , Tamanho da Ninhada , Estudo de Associação Genômica Ampla , Animais , Feminino , Galinhas/genética , Genoma , Estudo de Associação Genômica Ampla/veterinária , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Front Immunol ; 14: 1188940, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256135

RESUMO

Feed accounts for the largest portion (65-70%) of poultry production costs. The feed formulation is generally improved to efficiently meet the nutritional needs of chickens by reducing the proportion of crude protein (CP) and metabolizable energy (ME) levels in the diet. Although many studies have investigated the production performance during dietary restriction, there is a lack of research on the mechanisms by which immune cell function is altered. This study examined the effects of ME and CP restriction in the chicken diet on serum immunoglobulins and expression of immune function genes in spleen. Changes in serum immunoglobulins and immune-related gene expression were analyzed in 216 YS-909 broilers fed with 9 different dietary treatments, including experimental treatment diets containing low, standard, and high levels of ME or CP in the diet. At 42 days of age, serum immunoglobulins and expression of spleen immune genes in 6 female chickens selected randomly from each dietary treatment (3×3 factorial arrangement) group were measured by enzyme-linked immunosorbent assay (ELISA) and transcriptomic analysis using RNA sequencing, respectively. The results showed that the IgM level in the low ME group chickens was significantly (p < 0.05) lower than that in other groups. In addition, immune-related genes, such as MX1, USP18, TLR4, IFNG and IL18 were significantly upregulated when the dietary nutrient density was reduced, which may put the body in an inflammatory state. This study provided general information on the molecular mechanism of the spleen immune response to variable nutrient density.


Assuntos
Galinhas , Baço , Animais , Feminino , Transcriptoma , Nutrientes , Imunidade/genética , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Ração Animal/análise
7.
Poult Sci ; 101(11): 102165, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36179649

RESUMO

Abdominal fat is the major adipose tissue in chickens. In chicken, the deposition of abdominal fat affects meat yield and quality. Previous reports suggest that gut microbiota composition and function are associated with lipid metabolism. In this study, we used comparative metagenomics and metabolomics analysis to determine the gut microbiota and gut-host metabolite profiles in Shouguang (SG; a Chinese chicken breed with low-fat deposition) and Luqin (LQ; a fatty-type chicken breed with a fast growth rate) chickens. The results showed that LQ chickens had higher body weight, eviscerated yield, abdominal fat yield, abdominal fat ratio, and triglyceride (TG) content in the breast muscle than SG chickens. Untargeted metabolomics analyses showed a total of 11 liver metabolites, 19 plasma metabolites, and 30 cecal metabolites differentially enriched in LQ and SG chickens based on variable importance in the projection (VIP) ≥ 1 and P ≤ 0.05. These metabolites are involved in lipid and amino acid metabolism. The relative abundance of bacteria in the microbiota differed significantly between the 2 chicken breeds. The functional prediction of microbiota abundant in LQ chickens was starch and lactose degradation. Erysipelatoclostridium was abundant in LQ chickens and significantly positively correlated to palmitoyl ethanolamide (PEA), a key regulator of lipid metabolism. Our findings revealed differences in liver and plasma metabolites between chicken breeds with different adipose deposition capacities. Long-chain acylcarnitines might be important markers of adipose deposition differences in chickens. The cecum's microbial communities and metabolome profiles significantly differed between LQ and SG chickens. However, the relationship between cecal microbiota and their metabolites and liver and plasma metabolites is not thoroughly understood. Future research will focus on relating tissue metabolite changes to intestinal microbiota and their effects on body fat deposition.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Obesidade/genética , Obesidade/veterinária , Gordura Abdominal/metabolismo , Tecido Adiposo/metabolismo
8.
BMC Genomics ; 23(1): 342, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505302

RESUMO

BACKGROUND: The growth and development of skeletal muscle are regulated by protein-coding genes and non-coding RNA. Circular RNA (circRNA) is a type of non-coding RNA involved in a variety of biological processes, especially in post-transcriptional regulation. To better understand the regulatory mechanism of circRNAs during the development of muscle in chicken, we performed RNA-seq with linear RNA depletion for chicken breast muscle in 12 (E 12) and17 (E 17) day embryos, and 1 (D 1), 14 (D 14), 56 (D 56), and 98 (D 98) days post-hatch. RESULTS: We identified 5755 differentially expressed (DE)-circRNAs during muscle development. We profiled the expression of DE-circRNAs and mRNAs (identified in our previous study) at up to six time points during chicken muscle development and uncovered a significant profile (profile 16) for circRNA upregulation during aging in muscle tissues. To investigate competing endogenous RNA (ceRNA) regulation in muscle and identify muscle-related circRNAs, we constructed a circRNA-miRNA-mRNA regulatory network using the circRNAs and mRNAs from profile 16 and miRNAs identified in our previous study, which included 361 miRNAs, 68 circRNAs, 599 mRNAs, and 31,063 interacting pairs. Functional annotation showed that upregulated circRNAs might contribute to glycolysis/gluconeogenesis, biosynthesis of amino acids, pyruvate metabolism, carbon metabolism, glycogen and sucrose metabolism through the ceRNA network, and thus affected postnatal muscle development by regulating muscle protein deposition. Of them, circRNA225 and circRNA226 from the same host gene might be key circRNAs that could regulate muscle development by interacting with seven common miRNAs and 207 mRNAs. Our experiments also demonstrated that there were interactions among circRNA225, gga-miR-1306-5p, and heat shock protein alpha 8 (HSPA8). CONCLUSIONS: Our results suggest that adequate supply of nutrients such as energy and protein after hatching may be a key factor in ensuring chicken yield, and provide several candidate circRNAs for future studies concerning ceRNA regulation during chicken muscle development.


Assuntos
MicroRNAs , RNA Circular , Animais , Galinhas/genética , Galinhas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Front Physiol ; 12: 660370, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040544

RESUMO

The developmental complexity of muscle arises from elaborate gene regulation. Long non-coding RNAs (lncRNAs) play critical roles in muscle development through the regulation of transcription and post-transcriptional gene expression. In chickens, previous studies have focused on the lncRNA profile during the embryonic periods, but there are no studies that explore the profile from the embryonic to post-hatching period. Here, we reconstructed 14,793 lncRNA transcripts and identified 2,858 differentially expressed lncRNA transcripts and 4,282 mRNAs from 12-day embryos (E12), 17-day embryos (E17), 1-day post-hatch chicks (D1), 14-day post-hatch chicks (D14), 56-day post-hatch chicks (D56), and 98-day post-hatch chicks (D98), based on our published RNA-seq datasets. We performed co-expression analysis for the differentially expressed lncRNAs and mRNAs, using STEM, and identified two profiles with opposite expression trends: profile 4 with a downregulated pattern and profile 21 with an upregulated pattern. The cis- and trans-regulatory interactions between the lncRNAs and mRNAs were predicted within each profile. Functional analysis of the lncRNA targets showed that lncRNAs in profile 4 contributed to the cell proliferation process, while lncRNAs in profile 21 were mainly involved in metabolism. Our work highlights the lncRNA profiles involved in the development of chicken breast muscle and provides a foundation for further experiments on the role of lncRNAs in the regulation of muscle development.

10.
Anim Sci J ; 92(1): e13506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398896

RESUMO

Chicken body size (BS) is an economically important trait, which has been assessed in many studies for genetic selection. However, previous reports detected functional chromosome mutations or regions using gene chips. The present study used the specific-locus amplified fragment sequencing (SLAF-seq) technology to perform a genome-wide association study (GWAS) of purebred Wenshang Barred chickens. A total of 250 one-day-old male chickens were assessed in this study. Body size in individual birds was measured at 56 days. SLAF-seq was used to genotype and GWAS analysis was carried out using the general linear model (GLM) of the TASSEL program. A total of 1,286,715 single-nucleotide polymorphisms (SNPs) were detected, of which 175,211 were tested as candidate SNPs for genome-wide association analysis using the TASSEL general linear model. Three SNPs markers reached genome-wide significance. Of these, chrZ:81729634, chrZ:81841715, and chrZ:81954149 at 81,729,634, 81,841,715, and 81,954,149 bp of GGA Z were significantly associated with body diagonal length at 56 days (BDL56); and tibia length at 56 days (TL56). These SNPs were close to three genes, including ZCCHC7, PAX5, and MELK. These results open new horizons for studies on BS and should promote the use of Chinese chickens, especially Wenshang Barred chickens.


Assuntos
Tamanho Corporal/genética , Galinhas/genética , Estudo de Associação Genômica Ampla/métodos , Técnicas de Genotipagem/métodos , Característica Quantitativa Herdável , Animais , Masculino , Fator de Transcrição PAX5/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética
11.
BMC Genomics ; 22(1): 64, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468053

RESUMO

BACKGROUND: miRNAs play critical roles in growth and development. Various studies of chicken muscle development have focused on identifying miRNAs that are important for embryo or adult muscle development. However, little is known about the role of miRNAs in the whole muscle development process from embryonic to post-hatching periods. Here, we present a comprehensive investigation of miRNA transcriptomes at 12-day embryo (E12), E17, and day 1 (D1), D14, D56 and D98 post-hatching stages. RESULTS: We identified 337 differentially expressed miRNAs (DE-miRNAs) during muscle development. A Short Time-Series Expression Miner analysis identified two significantly different expression profiles. Profile 4 with downregulated pattern contained 106 DE-miRNAs, while profile 21 with upregulated pattern contained 44 DE-miRNAs. The DE-miRNAs with the upregulated pattern mainly played regulatory roles in cellular turnover, such as pyrimidine metabolism, DNA replication, and cell cycle, whereas DE-miRNAs with the downregulated pattern directly or indirectly contributed to protein turnover metabolism such as glycolysis/gluconeogenesis, pyruvate metabolism and biosynthesis of amino acids. CONCLUSIONS: The main functional miRNAs during chicken muscle development differ between embryonic and post-hatching stages. miRNAs with an upregulated pattern were mainly involved in cellular turnover, while miRNAs with a downregulated pattern mainly played a regulatory role in protein turnover metabolism. These findings enrich information about the regulatory mechanisms involved in muscle development at the miRNA expression level, and provide several candidates for future studies concerning miRNA-target function in regulation of chicken muscle development.


Assuntos
MicroRNAs , Transcriptoma , Animais , Galinhas/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , Desenvolvimento Muscular/genética , Músculos
12.
G3 (Bethesda) ; 10(11): 4071-4081, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32900904

RESUMO

As a class of transcription regulators, numerous miRNAs have been verified to participate in regulating ovary follicular development in chickens (Gallus gallus). Previously we showed that gga-miR-135a-5p has significant differential expression between high and low-yield chicken ovaries, and the abundance of gga-miR-135a-5p is significantly higher in follicular theca cells than in granulosa cells. However, the exact role of gga-miR-135a-5p in chicken follicular theca cells is unclear. In this study, primary chicken follicular theca cells were isolated and then transfected with gga-miR-135a-5p inhibitor. Transcriptome sequencing was performed in chicken follicular theca cells with or without transfection. Differentially expressed genes (DEGs) were analyzed using bioinformatics. A dual-luciferase reporter assay was used to verify the target relationship between gga-miR-135a-5p and predicted targets within the DEGs. Compared with the normal chicken follicle theca cells, 953 up-regulated and 1060 down-regulated genes were detected in cells with gga-miR-135a-5p inhibited. The up-regulated genes were significantly enriched in Gene Ontology terms and pathways involved in cell proliferation and differentiation. In chicken follicular theca cells, Krüppel-like factor 4 (KLF4), ATPase phospholipid transporting 8A1 (ATP8A1), and Complexin-1 (CPLX1) were significantly up-regulated when the expression of gga-miR-135a-5p was inhibited. In addition, KLF4, ATP8A1, and CPLX1 confirmed as targets of gga-miR-135a-5p by using a dual-luciferase assay in vitro The results suggest that gga-mir-135a-5p may involve in proliferation and differentiation in chicken ovarian follicular theca cells by targeting KLF4, ATP8A1, and CPLX1.


Assuntos
Galinhas , MicroRNAs , Animais , Proliferação de Células , Galinhas/genética , Feminino , Perfilação da Expressão Gênica , MicroRNAs/genética , Células Tecais
13.
Front Genet ; 10: 1308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998367

RESUMO

Skeletal muscle development and growth are closely associated with efficiency of poultry meat production and its quality. We performed whole transcriptome profiling based on RNA sequencing of breast muscle tissue obtained from Shouguang chickens at embryonic days (E) 12 and 17 to post-hatching days (D) 1, 14, 56, and 98. A total of 9,447 differentially expressed genes (DEGs) were filtered (Q < 0.01, fold change > 2). Time series expression profile clustering analysis identified five significantly different expression profiles that were divided into three clusters. DEGs from cluster I with downregulated pattern were significantly enriched in cell proliferation processes such as cell cycle, mitotic nuclear division, and DNA replication. DEGs from cluster II with upregulated pattern were significantly enriched in metabolic processes such as glycolysis/gluconeogenesis, insulin signaling pathway, calcium signaling pathway, and biosynthesis of amino acids. DEGs from cluster III, with a pattern that increased from E17 to D1 and then decreased from D1 to D14, mainly contributed to lipid metabolism. Therefore, this study may help us explain the mechanisms underlying the phenotype that myofiber hyperplasia occurs predominantly during embryogenesis and hypertrophy occurs mainly after birth at the transcriptional level. Moreover, lipid metabolism may contribute to the early muscle development and growth. These findings add to our knowledge of muscle development in chickens.

14.
Poult Sci ; 97(12): 4187-4192, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107614

RESUMO

Avian leukosis virus (ALV) is a tumor-inducing virus that spreads among most chicken species, causing serious financial losses for the poultry industry. Subgroup J avian leukosis virus (ALV-J) is a recombinant exogenous ALV, which shows more extensive host range in comparison with other subgroups, especially in Chinese local chickens. To identify the relationship between ALV-J host range and the polymorphism of its cellular receptors, we performed a wide range epidemiological investigation of current ALV-J infection in Chinese local chickens, and discovered that all the 18 local chicken breeds being investigated from main local chicken breeding provinces were ALV-J positive. Furthermore, we cloned ALV-J cellular receptor genes of chNHE1 and chANXA2 of these 18 chicken breeds. Sequence alignment demonstrated that despite several regular mutations at the nucleotide level, there were no corresponding amino acid mutations for either chNHE1 gene or chANXA2 gene. Additionally, virus entry assay indicated that the level of viral enter into cells is stable among different chicken breeds. Results of this study indicated that the wide host range of ALV-J in Chinese local chickens was partially due to the high conservatism of its cellular receptors, and also provide target sites for drug design of resistance to ALV-J infection.


Assuntos
Vírus da Leucose Aviária/fisiologia , Leucose Aviária/genética , Proteínas Aviárias/genética , Galinhas , Especificidade de Hospedeiro , Doenças das Aves Domésticas/genética , Receptores Virais/genética , Animais , Leucose Aviária/virologia , Polimorfismo Genético , Doenças das Aves Domésticas/virologia
15.
J Appl Genet ; 59(3): 305-312, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29946990

RESUMO

Chicken body weight (BW) is an economically important trait, and many studies have been conducted on genetic selection for BW. However, previous studies have detected functional chromosome mutations or regions using gene chips. The present study used the specific-locus amplified fragment sequencing (SLAF-seq) technology to perform a genome-wide association study (GWAS) on purebred Wengshang Barred chicken. A total of 1,286,715 single-nucleotide polymorphisms (SNPs) were detected, and 175,211 SNPs were selected as candidate SNPs for genome-wide association analysis using TASSEL general linear models. Six SNP markers reached genome-wide significance. Of these, rs732048524, rs735522839, rs738991545, and rs15837818 were significantly associated with body weight at 28 days (BW28), while rs314086457 and rs315694878 were significantly associated with BW120. These SNPs are close to seven genes (PRSS23, ME3, FAM181B, NABP1, SDPR, TSSK6L2, and RBBP8). Moreover, 24 BW-associated SNPs reached "suggestive" genome-wide significance. Of these, 6, 13, 1, and 4 SNPs were associated with BW28, BW56, BW80, and BW120, respectively. These results would enrich the studies on BW and promote the use of Chinese chicken, especially the Wenshang Barred chicken.


Assuntos
Peso Corporal/genética , Galinhas/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Animais , Mapeamento Cromossômico , Análise por Conglomerados , Masculino , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável
16.
Basic Clin Pharmacol Toxicol ; 120(6): 560-570, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28032440

RESUMO

Magnolol is a pharmacological biphenolic compound extracted from Chinese herb Magnolia officinalis, which displays anti-inflammatory and antioxidant effects. This study was aimed at exploring the potential effect of magnolol on immune-related liver fibrosis. Herein, BALB/c mice were injected with concanavalin A (ConA, 8 mg/kg/week) up to 6 weeks to establish hepatic fibrosis, and magnolol (10, 20, 30 mg/kg/day) was given to these mice orally throughout the whole experiment. We found that magnolol preserved liver function and attenuated liver fibrotic injury in vivo. In response to ConA stimulation, the CD4+ T cells preferred to polarizing towards CD4+ T helper 17 (Th17) cells in liver. Magnolol was observed to inhibit Th17 cell differentiation in ConA-treated liver in addition to suppressing interleukin (IL)-17A generation. Hepatic stellate cells were activated in fibrotic liver as demonstrated by increased alpha smooth muscle actin (α-SMA) and desmin. More transforming growth factor (TGF)-ß1 and activin A were secreted into the serum. Magnolol suppressed this abnormal HSC activation. Furthermore, the phosphorylation of Smad3 in its linker area (Thr179, Ser 204/208/213) was inhibited by magnolol. In vitro, the recombinant IL-17A plus TGF-ß1 or activin A induced activation of human LX2 HSCs and promoted their collagen production. Smad3/Smad4 signalling pathway was activated in LX2 cells exposed to the fibrotic stimuli, as illustrated by the up-regulated phospho-Smad3 and the enhanced interaction between Smad3 and Smad4. These alterations were suppressed by magnolol. Collectively, our study reveals a novel antifibrotic effect of magnolol on Th17 cell-mediated fibrosis.


Assuntos
Compostos de Bifenilo/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Lignanas/farmacologia , Cirrose Hepática Experimental/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/antagonistas & inibidores , Proteína Smad4/antagonistas & inibidores , Células Th17/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Concanavalina A/farmacologia , Células Estreladas do Fígado/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteína Smad3/fisiologia , Proteína Smad4/fisiologia , Células Th17/citologia
17.
PLoS One ; 10(11): e0143298, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26574748

RESUMO

BMP15 (Bone morphogenetic protein 15) is an oocyte-secreted growth factor required for ovarian follicle development and ovulation in mammals, but its effects on reproduction in chickens are unclear. In this study, the association between BMP15 polymorphisms and reproduction traits were analyzed, and its expression characteristics in different tissues were explored in LaiWu Black chickens. Three single nucleotide polymorphisms (SNPs) were identified in four hundred LaiWu Black chickens. One SNP (NC_006091.3:g.1773T>C) located in exon 2 which was significantly associated with egg weight at first egg (EWFE) (P = 0.0389), was novel. Diplotypes based on the three SNPs were found to be significantly associated with egg weight at age of 43W (EW43) (P = 0.0058). The chickens with H3H3 diplotype had their first egg 0.57 days later than chickens with H5H5 diplotype and 1.21 days-3.96 days earlier than the other five diplotype chickens. The egg production at age of 43W (E43), egg production at age of 46W (E46) and egg production at age of 48W (E48) for chickens with H3H3 diplotype were the highest among all the chickens, and the E48 of chickens with H3H3 diplotype had 11.83 eggs higher than chickens with H1H5 diplotype. RT-qPCR results showed that the expression level of BMP15 gene in ovarian follicle was in the order of 4 mm>6 mm -8 mm> 15 mm -19 mm> 23 mm -29 mm > 33 mm -34 mm in diameter. The mRNA level in follicles of 4 mm and 6-8 mm in diameter were significantly higher than that in the other follicles (P<0.01). In the same week, the highest mRNA level was found in the ovary, and it was significantly different from that found in the liver and oviduct (P<0.01). Our results indicate that BMP15 plays a vital role in the development of ovary and follicles, especially in the development of primary follicles. H3H3 may be an potential advantageous molecular marker for improving reproduction traits in chickens.


Assuntos
Proteínas Aviárias/genética , Proteína Morfogenética Óssea 15/genética , Galinhas/genética , Reprodução/genética , Alelos , Animais , Diploide , Ovos , Éxons , Feminino , Frequência do Gene , Haplótipos , Folículo Ovariano/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
Sheng Wu Gong Cheng Xue Bao ; 29(7): 904-13, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24195357

RESUMO

We have assessed the relationships between immune trait (antibody titers of Sheep red blood cell, SRBC; Avian influenza, AI; Newcastle disease, ND) and varieties of MHC B-LBHII Gene in local chicken breeds (Wenshang Barred chicken, LH; Laiwu Black chicken, LWH; and Jining Bairi chicken, BR). We selected 300 chickens randomly from the three indigenous chicken populations. The variations of MHC B-L BII gene were detected by directly DNA sequencing and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). The results indicated that there were about 19-22 nucleotide mutations in the three local breeds, which could affect 16-18 amino acid variations. Another results indicated that there was significantly relationship between seven to eight SNPs of the MHC B-LBII region and some immune traits (P < 0.05 or P < 0.01). Both locus G97A and locus T138A were found in the three species, which were significantly related to the antibodies of SRBC, ND and AI antibody titers (P < 0.05). Among them, the locus G97A was significantly associated with ND antibody titers (P < 0.05) in BR chicken, with SRBC antibody titers (P < 0.05) in LWH chicken, and with H9 antibody titers (P < 0.05) in LH chicken. Furthermore, locus T138A was significantly associated with H9 antibody titers in BR and LH chickens (P < 0.05). All those results suggest relationships among the different varieties of MHC B-LBII and immune traits in the three local breeds.


Assuntos
Galinhas/genética , Complexo Principal de Histocompatibilidade/genética , Polimorfismo de Nucleotídeo Único , Animais , Sequência de Bases , Cruzamento , Galinhas/imunologia , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Análise de Sequência de DNA
19.
PLoS One ; 8(2): e56656, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23431385

RESUMO

CTSD (Cathepsin D) is a key enzyme in yolk formation, and it primarily affects egg yolk weight and egg weight. However, recent research has mostly focused on the genomic structure of the CTSD gene and the enzyme's role in pathology, and less is known about the enzyme's functions in chickens. In this paper, the correlations between CTSD polymorphisms and egg quality traits were analyzed in local Shandong chicken breeds. CTSD polymorphisms were investigated by PCR-SSCP (polymerase chain reaction single strand conformation polymorphism) and sequencing analysis. Two variants were found to be associated with egg quality traits. One variant (2614T>C), located in exon 3, was novel. Another variant (5274G>T), located in intron 4, was previously referred to as rs16469410. Overall, our results indicated that CTSD would be a useful candidate gene in selection programs for improving yolk traits.


Assuntos
Proteínas Aviárias/genética , Catepsina D/genética , Galinhas/genética , Gema de Ovo/fisiologia , Polimorfismo de Nucleotídeo Único , Animais , Sequência de Bases , Qualidade dos Alimentos , Frequência do Gene , Estudos de Associação Genética , Haplótipos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA